《2025-2031年中国大数据金融行业市场全景监测及投资战略咨询报告》由华经产业研究院研究团队精心研究编制,对大数据金融行业发展环境、市场运行现状进行了具体分析,还重点分析了行业竞争格局、重点企业的经营现状,结合大数据金融行业的发展轨迹和实践经验,对未来几年行业的发展趋向进行了专业的预判;为企业、科研、投资机构等单位投资决策、战略规划、产业研究提供重要参考。
本研究报告数据主要采用国家统计数据、海关总署、问卷调查数据、商务部采集数据等数据库。其中宏观经济数据主要来自国家统计局,部分行业统计数据主要来自国家统计局及市场调研数据,企业数据主要来自于国家统计局规模企业统计数据库及证券交易所等,价格数据主要来自于各类市场监测数据库。
报告目录
第1章大数据金融行业概念界定及发展环境剖析
1.1 大数据金融相关概念
1.1.1 大数据产业
(1)大数据产业的概念
(2)大数据的生态系统
(3)大数据的商业价值
(4)大数据产业各个行业应用情况
(5)大数据产业金融领域应用情况
1.1.2 大数据金融基本定义
1.1.3 大数据金融主要特征
1.1.4 大数据金融主要发展模式
(1)平台金融
(2)供应链金融
1.1.5 本报告数据来源及统计口径说明
1.2 大数据金融行业政策环境分析
1.2.1 行业监管体系概述
1.2.2 行业主要政策分析
1.2.3 政策环境对行业发展影响
1.3 大数据金融行业经济环境分析
1.3.1 国内经济走势分析
(1)GDP增长情况
(2)工业增加值增长情况
(3)固定资产投资分析
1.3.2 国内经济发展展望
(1)中科院权威预测
(2)疫情下的中国经济预测
1.3.3 经济环境对行业发展影响
1.4 大数据金融行业技术环境分析
1.4.1 大数据与云计算
(1)编程模型
(2)海量数据分布存储技术
(3)海量数据管理技术
(4)虚拟化技术
(5)云计算平台管理技术
(6)并行计算和并行算法
(7)面向服务的体系结构SOA
(8)云安全
1.4.2 大数据处理工具
1.4.3 技术环境对行业发展影响
1.5 大数据金融行业社会环境分析
1.5.1 互联网行业发展现状
(1)互联网网民规模
(2)互联网资源规模
1.5.2 个人互联网应用状况
(1)即时通信
(2)搜索引擎
(3)网络新闻
1.5.3 社会环境对行业发展影响
第2章大数据金融国际市场发展现在分析
2.1 银行大数据全球发展现状
2.1.1 海外银行大数据发展分析
2.1.2 银行大数据建设案例分析
2.2 保险大数据全球发展现状
2.2.1 海外保险大数据发展分析
2.2.2 保险大数据建设案例分析
2.3 国外领先大数据金融服务商
2.3.1 IBM
2.3.2 甲骨文股份有限公司
2.3.3 英特尔
2.3.4 SAP公司
2.3.5 天睿
2.4 国外大数据金融发展启示
2.4.1 上升为战略角度,制定规划
2.4.2 加大关键技术的研发和应用
2.4.3 与传统互联网企业的合作竞争
第3章大数据金融创新分析
3.1 大数据金融三大创新支点
3.2 大数据金融基础设施创新
3.2.1 支付体系建设分析
(1)支付行业用户规模
(2)支付行业交易规模
(3)支付行业模式分析
(4)支付行业市场规模预测
3.2.2 征信体系建设分析
(1)征信体系现状分析
(2)征信机构数据库建设情况
(3)征信行业数据端商业模式
(4)大数据征信发展趋势分析
3.2.3 资产交易平台分析
(1)资产交易平台发展规模
(2)资产交易平台主要类别
(3)资产交易平台商业模式
3.2.4 基础设施创新方向
(1)支付体系介质创新
(2)征信体系多元发展
(3)交易平台去中介化
3.3 大数据金融平台创新分析
3.3.1 电商平台发展现状分析
(1)电商平台客户分析
(2)电商市场竞争格局分析
(3)电商重点企业优势分析
(4)电商行业投资并购分析
3.3.2 社交平台发展现状分析
(1)社交应用使用频率分析
(2)社交网络市场竞争格局分析
(3)社交网络重点企业优势分析
(4)社交网络平台投资并购分析
3.3.3 信息服务平台发展现状
(1)门户网站竞争格局分析
(2)门户网站投资并购分析
3.3.4 平台建设创新发展方向
(1)用户积累方式革新
(2)平台个性定制革新
3.4 大数据金融渠道创新升级分析
3.4.1 银行业渠道互联网化发展现状
(1)电子银行的交易规模
(2)电子银行的模式分析
3.4.2 保险业渠道互联网化发展现状
(1)保险业网销交易规模
(2)保险业网销模式分析
3.4.3 证券业渠道互联网化发展现状
(1)互联网证券发展历程
(2)互联网证券模式分析
3.4.4 渠道创新升级策略分析
(1)渠道定位转型
(2)实体渠道转型
第4章大数据在金融细分领域的应用分析
4.1 银行业
4.1.1 银行业大数据金融发展历程
4.1.2 银行业大数据金融创新模式
(1)风险控制模式创新
(2)产品营销模式创新
(3)银行运营模式创新
(4)银行服务模式创新
4.1.3 银行业大数据金融应用现状
4.1.4 银行业大数据金融经典案例
(1)花旗银行大数据金融案例分析
(2)中信银行大数据金融案例分析
(3)中国银行大数据金融案例分析
4.1.5 银行业大数据金融发展潜力
4.1.6 银行业大数据金融发展前景
4.2 保险业
4.2.1 保险业大数据金融发展历程
4.2.2 保险业大数据金融创新模式
(1)赔付管理模式创新
(2)业务定价模式创新
(3)险企运营模式创新
(4)产品营销模式创新
4.2.3 保险业大数据金融发展现状
4.2.4 保险业大数据金融经典案例
(1)平安人寿大数据金融案例分析
(2)泰康人寿大数据金融案例分析
4.2.5 保险业大数据金融发展前景
4.3 证券业
4.3.1 证券业大数据金融发展历程
4.3.2 证券业大数据金融创新模式
(1)客户关系管理模式创新
(2)证券监管模式创新
(3)市场预期模式创新
4.3.3 证券业大数据金融发展现状
4.3.4 证券业大数据金融经典案例
(1)国泰君安大数据金融案例分析
(2)中信证券大数据金融案例分析
4.3.5 证券业大数据金融发展前景
4.4 其他领域大数据金融应用情况
4.4.1 信托业大数据金融应用分析
4.4.2 小额贷款领域大数据金融应用分析
4.4.3 担保业大数据金融应用分析
4.4.4 P2P网贷大数据金融应用分析
第5章中国大数据金融领先服务商案例分析
5.1 中国大数据金融领先服务商竞争状态及市场格局
5.2 中国领先大数据金融服务商案例分析
5.2.1 北京荣之联科技股份有限公司
(1)企业发展简况分析
(2)企业经营情况分析
(3)企业经营优劣势分析
5.2.2 九次方大数据信息集团有限公司
(1)企业发展简况分析
(2)企业经营情况分析
(3)企业经营优劣势分析
5.2.3 贵州数联科技有限公司
(1)企业发展简况分析
(2)企业经营情况分析
(3)企业经营优劣势分析
5.2.4 中国银行保险信息技术管理有限公司
(1)企业发展简况分析
(2)企业经营情况分析
(3)企业经营优劣势分析
5.2.5 北京腾云天下科技有限公司
(1)企业发展简况分析
(2)企业经营情况分析
(3)企业经营优劣势分析
5.3 互联网企业大数据金融战略布局分析
5.3.1 阿里巴巴
(1)企业发展简况分析
(2)企业经营情况分析
(3)企业经营优劣势分析
5.3.2 腾讯
(1)企业发展简况分析
(2)企业经营情况分析
(3)企业经营优劣势分析
5.3.3 百度
(1)企业发展简况分析
(2)企业经营情况分析
(3)企业经营优劣势分析
第6章金融机构大数据金融战略布局分析
6.1 银行大数据金融领先应用机构
6.1.1 建设银行
(1)企业发展简况分析
(2)企业经营情况分析
(3)企业经营优劣势分析
6.1.2 工商银行
(1)企业发展简况分析
(2)企业经营情况分析
(3)企业经营优劣势分析
6.1.3 中国银行
(1)企业发展简况分析
(2)企业经营情况分析
(3)企业经营优劣势分析
6.1.4 招商银行
(1)企业发展简况分析
(2)企业经营情况分析
(3)企业经营优劣势分析
6.2 保险大数据金融领先应用机构
6.2.1 中国人寿
(1)企业发展简况分析
(2)企业经营情况分析
(3)企业经营优劣势分析
6.2.2 中国人保
(1)企业发展简况分析
(2)企业经营情况分析
(3)企业经营优劣势分析
6.2.3 太平保险
(1)企业发展简况分析
(2)企业经营情况分析
(3)企业经营优劣势分析
6.3 证券大数据金融领先应用机构
6.3.1 招商证券
(1)企业发展简况分析
(2)企业经营情况分析
(3)企业经营优劣势分析
6.3.2 中信证券
(1)企业发展简况分析
(2)企业经营情况分析
(3)企业经营优劣势分析
6.3.3 国泰君安
(1)企业发展简况分析
(2)企业经营情况分析
(3)企业经营优劣势分析
第7章大数据金融发展趋势及投资战略规划
7.1 大数据金融发展风险分析
7.1.1 大数据金融主要风险来源
7.1.2 大数据金融风险管理措施
7.2 大数据金融发展SWOT分析
7.2.1 大数据金融发展优势分析
7.2.2 大数据金融发展劣势分析
7.2.3 大数据金融发展机遇分析
7.2.4 大数据金融发展挑战分析
7.3 大数据金融发展趋势分析
7.3.1 跨界融合趋势
7.3.2 行业细分趋势
7.3.3 实体转型趋势
7.3.4 个性服务趋势
7.4 大数据金融投融资机会分析
7.4.1 大数据金融投融资现状分析
7.4.2 大数据金融并购现状分析
7.4.3 大数据金融投资机会分析
7.4.4 大数据金融投资规划分析
图表目录
图表1:大数据产业相关企业经济活动分类
图表2:大数据产业链构成
图表3:大数据产业链中数据组织与管理层涉及业务
图表4:大数据产业链中数据分析与发现层涉及业务
图表5:大数据的生态系统
图表6:大数据的商业价值
图表7:大数据在各个行业的潜在应用指数
图表8:2020-2024年中国大数据应用领域结构(单位:%)
图表9:中国大数据在金融行业各领域的应用场景介绍
图表10:大数据金融主要特征
研究方法
报告研究基于研究团队收集的大量一手和二手信息,使用桌面研究与定量调查、定性分析相结合的方式,全面客观的剖析当前行业发展的总体市场容量、产业链、竞争格局、进出口、经营特性、盈利能力和商业模式等。科学使用SCP模型、SWOT、PEST、回归分析、SPACE矩阵等研究模型与方法综合分析行业市场环境、产业政策、竞争格局、技术革新、市场风险、行业壁垒、机遇以及挑战等相关因素。根据各行业的发展轨迹及实践经验,对行业未来的发展趋势做出客观预判,助力企业商业决策。
数据来源
本公司数据来源主要是一手资料和二手资料相结合,本司建立了严格的数据清洗、加工和分析的内控体系,分析师采集信息后,严格按照公司评估方法论和信息规范的要求,并结合自身专业经验,对所获取的信息进行整理、筛选,最终通过综合统计、分析测算获得相关产业研究成果。
一手资料来源于我司调研部门对行业内重点企业访谈获取的一手信息数据,采访对象涉及企业CEO、营销总监、高管、技术负责人、行业专家、产业链上下游企业、分销商、代理商、经销商、相关投资机构等。市场调研部分的一手信息来源为需要研究的对象终端消费群体。
二手资料来源主要包括全球范围相关行业新闻、公司年报、非盈利性组织、行业协会、政府机构、海关数据及第三方数据库等,根据具体行业,应用的二手信息来源具有一定的差异。二手信息渠道涉及SEC、公司年报、国家统计局、中国海关、WIND数据库、CEIC数据库、国研网、BvD ORBIS ASIA PACIFIC数据库、皮书数据库及中经专网、国家知识产权局等。
售后服务
华经产业研究院提供完善的售后服务体系,您的反馈均1个工作日内快速回应,及时解决您的需求。
版权提示
华经产业研究院倡导尊重与保护知识产权,对有明确来源的内容均注明出处。若发现本站文章存在内容、版权或其它问题,请联系kf@huaon.com,我们将及时与您沟通处理
-
2025-2031年中国大数据金融行业市场需求预测及投资战略规划报告
2024-11-14 大数据金融 -
2024-2030年中国大数据金融行业市场深度分析及投资策略研究报告
2024-02-23 大数据金融 -
2024-2030年中国大数据金融行业发展潜力预测及投资战略规划报告
2023-12-13 大数据金融 -
2023-2028年中国大数据金融行业市场深度分析及投资策略咨询报告
2023-04-11 大数据金融 -
2023-2028年中国大数据金融行业发展监测及市场发展潜力预测报告
2023-02-09 大数据金融 -
2025-2031年中国大数据金融行业市场全景监测及投资战略咨询报告
2024-12-27 大数据金融