本研究报告数据主要采用国家统计数据、海关总署、问卷调查数据、商务部采集数据等数据库。其中宏观经济数据主要来自国家统计局,部分行业统计数据主要来自国家统计局及市场调研数据,企业数据主要来自于国家统计局规模企业统计数据库及证券交易所等,价格数据主要来自于各类市场监测数据库。
报告目录
第一章人工智能的基本介绍
1.1 人工智能的基本概述
1.1.1 人工智能的内涵
1.1.2 人工智能的分类
1.1.3 人工智能关键环节
1.1.4 人工智能研究阶段
1.1.5 人工智能的产业链
1.2 人工智能发展历程
1.2.1 发展简史
1.2.2 研究历程
1.2.3 发展阶段
1.3 人工智能的研究方法
1.3.1 大脑模拟
1.3.2 符号处理
1.3.3 子符号法
1.3.4 统计学法
1.3.5 集成方法
第二章中国际人工智能行业发展分析
2.1全球人工智能行业发展综况
2.1.1 人工智能概念的悄然兴起
2.1.2 驱动人工智能的内外动因
2.1.3 人工智能的发展阶段分析
2.1.4 全球人工智能产业发展状况
2.1.5 发达国家重视人工智能产业
2.1.6 世界人工智能迎来发展新阶段
2.2 美国
2.3 日本
2.4各国人工智能产业发展动态
2.4.1 欧盟推进服务机器人研发
2.4.2 欧美推出大脑发展计划
2.4.3 俄国成功开发ai系统
2.4.4 韩国人工智能研发动态
2.4.5 ai应用于巴西世界杯
2.5国际企业加快布局人工智能领域
2.5.1 互联网企业加快ai产业布局
2.5.2 facebook建设ai硬件平台
2.5.3 戴尔开展人工智能研发合作
2.5.4 雅虎迈出人工智能发展步伐
2.5.5 维基百科涉足人工智能领域
第三章中国人工智能行业政策环境分析
3.1 政策助力人工智能发展
3.1.1 政策加码布局人工智能
3.1.2 人工智能将纳入“十四五”
3.1.3 中国大脑研究计划开启
3.1.4 人工智能成为国家战略重点
3.2 人工智能行业相关政策分析
3.2.1 “中国制造”助力人工智能
3.2.2 “互联网+”推动人工智能
3.3 人工智能行业地方政策环境分析
3.3.1 ai或纳入北京“十四五”
3.3.2 上海市推出ai“脑计划”
3.3.3 人工智能获广州财政支持
3.3.4 深圳市具备ai发展优势
3.4 机器人行业政策规划分析
3.4.1 政策大力支持机器人行业
3.4.2 工业机器人将持续高增长
3.4.3 服务机器人将成为新蓝海
第四章中国人工智能行业发展分析
4.1人工智能行业发展综况
4.1.1 人工智能技术方兴未艾
4.1.2 国内人工智能布局加快
4.1.3 人工智能实验室成立
4.1.4 人工智能行业发展迅猛
4.1.5 人工智能市场需求将增长
4.1.6 人工智能市场进入新阶段
4.2 人工智能产业生态格局分析
4.2.1 生态格局基本架构
4.2.2 基础资源支持层
4.2.3 技术实现路径层
4.2.4 应用实现路径层
4.2.5 未来生态格局展望
4.3人工智能区域发展动态分析
4.3.1 哈尔滨逐步完善机器人产业
4.3.2 安徽省建立人工智能学会
4.3.3 四川成立人工智能实验室
4.3.4 上海进一步推进人工智能
4.3.5 福建建立仿脑智能实验室
4.4人工智能技术研究动态分析
4.4.1 人工智能再获重大突破
4.4.2 智能语音识别及控制技术
4.4.3 高级人工智能逐步突破
4.4.4 ai神经网络识别技术
4.4.5 人工智能带来媒体变革
4.5 人工智能行业发展存在的主要问题
4.5.1 人工智能发展面临的困境
4.5.2 人工智能发展的隐性问题
4.5.3 人工智能发展的道德问题
4.5.4 人工智能发展的技术障碍
4.6 人工智能行业发展对策及建议
4.6.1 人工智能的发展策略分析
4.6.2 人工智能的技术发展建议
4.6.3 人工智能伦理问题的对策
第五章人工智能行业发展驱动要素分析
5.1 硬件基础日益成熟
5.1.1 高性能cpu
5.1.2 “人脑”芯片
5.1.3 量子计算机
5.1.4 仿生计算机
5.2 大规模并行运算的实现
5.2.1 云计算的关键技术
5.2.2 云计算的应用模式
5.2.3 我国推进云计算发展
5.2.4 云计算技术发展动态
5.2.5 云计算成人工智能基础
5.3 大数据技术的崛起
5.3.1 大数据技术的内涵
5.3.2 大数据的各个环节
5.3.3 大数据的主要应用领域
5.3.4 大数据成人工智能数据源
5.3.5 大数据技术助力人工智能
5.4 深度学习技术的出现
5.4.1 机器学习的阶段
5.4.2 深度学习技术内涵
5.4.3 深度学习算法技术
5.4.4 深度学习的技术应用
5.4.5 深度学习提高人工智能水平
第六章人工智能行业的技术基础分析
6.1 自然语言处理
6.1.1 自然语言处理内涵
6.1.2 语音识别技术分析
6.1.3 语义技术研发状况
6.1.4 自动翻译技术内涵
6.2 计算机视觉
6.2.1 计算机视觉的内涵
6.2.2 计算机视觉的应用
6.2.3 计算机视觉的运作
6.2.4 人脸识别技术应用
6.3 模式识别技术
6.3.1 模式识别技术内涵
6.3.2 文字识别技术应用
6.3.3 指掌纹识别技术应用
6.3.4 模式识别发展潜力
6.4 知识表示
6.4.1 知识表示的内涵
6.4.2 知识表示的方法
6.4.3 知识表示的进展
6.5 其他技术基础
6.5.1 自动推理技术
6.5.2 环境感知技术
6.5.3 自动规划技术
6.5.4 系统技术
第七章人工智能技术的主要应用领域分析
7.1 工业领域
7.1.1 智能工厂进一步转型
7.1.2 人工智能的工业应用
7.1.3 人工智能应用于制造领域
7.1.4 人工智能助力中国制造
7.1.5 人工智能成工业发展方向
7.1.6 ai工业应用的前景广阔
7.2 医疗领域
7.2.1 人工智能的医疗应用概况
7.2.2 人工智能在中医学中的应用
7.2.3 人工神经网络技术的医学应用
7.2.4 ai在医学影像诊断中的应用
7.2.5 ai在医疗诊断应用中的展望
7.2.6 企业加快布局医疗人工智能
7.3 社交领域
7.3.1 人工智能的移动社交应用
7.3.2 人工智能社交产品发布
7.3.3 社交网络成ai应用焦点
7.4 无人驾驶领域
7.4.1 无人驾驶的效益分析
7.4.2 自动驾驶技术发展进程
7.4.3 无人驾驶产业发展加快
7.4.4 人工智能助力无人驾驶
7.4.5 ai成为智能汽车发展方向
7.5 其他领域
7.5.1 人工智能的智能搜索应用
7.5.2 人工智能应用于电子商务
7.5.3 人工智能与可穿戴设备结合
7.5.4 人工智能成3d打印基础
7.5.5 人工智能的“虚拟助手”
7.5.6 人工智能家居成为新趋势
第八章人工智能机器人发展分析
8.1机器人产业发展综况
8.1.1 全球机器人行业规模分析
8.1.2 中国工业机器人市场现状
8.1.3 机器人行业产业链构成
8.1.4 机器人的替代优势明显
8.1.5 机器人下游应用产业多
8.1.6 智能机器人成为发展趋势
8.2 人工智能在机器人行业的应用状况
8.2.1 人工智能与机器人的关系
8.2.2 ai于机器人的应用过程
8.2.3 ai大量运用于小型机器人
8.2.4 ai机器人的重要应用领域
8.3 人工智能在智能机器人领域的技术应用
8.3.1 系统的应用
8.3.2 模式识别的应用
8.3.3 机器视觉的应用
8.3.4 机器学习的应用
8.3.5 分布式ai的应用
8.3.6 进化算法的应用
8.4 机器人重点应用领域分析
8.4.1 医疗机器人
8.4.2 军事机器人
8.4.3 教育机器人
8.4.4 家用机器人
8.4.5 物流机器人
8.4.6 协作型机器人
第九章中国际人工智能行业重点企业分析
9.1 微软公司
9.1.1 企业发展简况分析
9.1.2 企业经营情况分析
9.1.3 企业经营优劣势分析
9.2 ibm公司
9.2.1 企业发展简况分析
9.2.2 企业经营情况分析
9.2.3 企业经营优劣势分析
9.3 谷歌公司
9.3.1 企业发展简况分析
9.3.2 企业经营情况分析
9.3.3 企业经营优劣势分析
9.4 亚马逊公司
9.4.1 企业发展简况分析
9.4.2 企业经营情况分析
9.4.3 企业经营优劣势分析
第十章中国人工智能行业重点企业分析
10.1 百度公司
10.1.1 企业发展简况分析
10.1.1 企业经营情况分析
10.1.1 企业经营优劣势分析
10.2 腾讯公司
10.2.1 企业发展简况分析
10.2.1 企业经营情况分析
10.2.1 企业经营优劣势分析
10.3 阿里集团
10.3.1 企业发展简况分析
10.3.1 企业经营情况分析
10.3.1 企业经营优劣势分析
10.4 科大讯飞股份有限公司
10.4.1 企业发展简况分析
10.4.1 企业经营情况分析
10.4.1 企业经营优劣势分析
10.5 北京捷通华声语音技术有限公司
10.5.1 企业发展简况分析
10.5.1 企业经营情况分析
10.5.1 企业经营优劣势分析
第十一章2019-2023年人工智能行业投资状况分析
11.1 人工智能行业投资综况
11.1.1 全球人工智能的投融资分析
11.1.2 国内人工智能的投融资状况
11.1.3 人工智能行业投资总量分析
11.1.4 人工智能行业投资进程加快
11.1.5 ai认知技术商业投资加快
11.2 人工智能行业投资动态
11.3 人工智能行业迎来投资机遇
11.3.1 人工智能成为投资风口
11.3.2 人工智能进入黄金时期
11.3.3 人工智能迎来投资机遇
11.3.4 全球人工智能投资升温
第十二章人工智能行业发展前景及趋势预测
12.1 人工智能行业发展前景展望
12.1.1 人工智能发展前景展望
12.1.2 人工智能的市场空间巨大
12.1.3 人工智能成为发展新热点
12.1.4 人工智能产业的机遇与挑战
12.2 人工智能行业发展趋势预测
12.2.1 人工智能未来发展趋势
12.2.2 “智能+x”将成新时尚
12.2.3 机器视觉成主要发展方向
12.2.4 人工智能将带来新变化
12.2.5 人工智能市场规模预测
图表目录
图表 人工智能产业链
图表 全球运功监测传动器市场
图表 国内企业在人工智能领域的布局
图表 人工智能产业生态格局的三层基本架构
图表 百度大脑的存储能力
图表 技术层的运行机制
图表 专业智能阶段的ai产业格局
图表 通用智能阶段的ai产业格局
图表 不同测试方法得出评分不具可比性
图表 人工智能系统无法识别图像问题
图表 人工智能系统无法操控工具回答问题
更多图表见正文……
研究方法
报告研究基于研究团队收集的大量一手和二手信息,使用桌面研究与定量调查、定性分析相结合的方式,全面客观的剖析当前行业发展的总体市场容量、产业链、竞争格局、进出口、经营特性、盈利能力和商业模式等。科学使用SCP模型、SWOT、PEST、回归分析、SPACE矩阵等研究模型与方法综合分析行业市场环境、产业政策、竞争格局、技术革新、市场风险、行业壁垒、机遇以及挑战等相关因素。根据各行业的发展轨迹及实践经验,对行业未来的发展趋势做出客观预判,助力企业商业决策。
数据来源
本公司数据来源主要是一手资料和二手资料相结合,本司建立了严格的数据清洗、加工和分析的内控体系,分析师采集信息后,严格按照公司评估方法论和信息规范的要求,并结合自身专业经验,对所获取的信息进行整理、筛选,最终通过综合统计、分析测算获得相关产业研究成果。
一手资料来源于我司调研部门对行业内重点企业访谈获取的一手信息数据,采访对象涉及企业CEO、营销总监、高管、技术负责人、行业专家、产业链上下游企业、分销商、代理商、经销商、相关投资机构等。市场调研部分的一手信息来源为需要研究的对象终端消费群体。
二手资料来源主要包括全球范围相关行业新闻、公司年报、非盈利性组织、行业协会、政府机构、海关数据及第三方数据库等,根据具体行业,应用的二手信息来源具有一定的差异。二手信息渠道涉及SEC、公司年报、国家统计局、中国海关、WIND数据库、CEIC数据库、国研网、BvD ORBIS ASIA PACIFIC数据库、皮书数据库及中经专网、国家知识产权局等。
售后服务
华经产业研究院提供完善的售后服务体系,您的反馈均1个工作日内快速回应,及时解决您的需求。
版权提示
华经产业研究院倡导尊重与保护知识产权,对有明确来源的内容均注明出处。若发现本站文章存在内容、版权或其它问题,请联系kf@huaon.com,我们将及时与您沟通处理
-
以人工智能为驱动,有望通过颠覆性创新重塑产业竞争格局
2024-12-17 人工智能 -
科学家呼吁全球携手创建AI虚拟细胞
2024-12-16 人工智能 -
推动传统产业转型升级,为经济高质量发展注入新活力
2024-12-13 人工智能 -
AI求解偏微分方程较以往快数千倍
2024-12-11 人工智能 -
生成式人工智能应用日趋广泛,赋能千行百业智能化升级
2024-12-01 人工智能